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Temperature relaxation in two-temperature states of dense electron-ion systems
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It is shown that the Landau-Spitzer theory for temperature relaxation between electrons and ions, which was
originally derived for ideal plasmas, is in fact more general. A relaxation formula is derived, for arbitrary
ion-ion coupling that follows from elementary considerations combined with the fluctuation-dissipation theo-
rem and the-sum rule. The conditions for the validity of this theory are weak electron-ion coupling and that
the spectrum of fluctuations of the ions lies at energies far below the resonances of the electrons spectrum. It
is found that the rate of energy relaxation is not sensitive to the details of the ion-excitation spectrum. For
classical electrons the formula reduces to the Landau-Spitzer form with minor modifications.
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[. INTRODUCTION generated by ultrashort pulse lasers, in which density is high
and potential energy dominates over thermal kinetic energy.
Matter in nature and in laboratory experiments is not al- In a recent work[6], Dharma-wardana and Perrot pre-
ways in thermodynamic equilibrium. The state behind asented formulas for the rate of energy relaxation. In the
shock and the state generated by ultrashort pulse lasers aagalysis, they made a distinction between the above-
two well-known examples of nonequilibrium states. In thementioned class of “single-particle” or “Spitzer-type” for-
first case, the shock energy is imparted mainly to the ionsmulas for energy relaxation and a more general class of for-
The energy transfer from the ions to the electrons, whichmulas. The more general formulas, appropriate also for
eventually brings the system to a thermodynamic equilib-nonideal plasmas with strong electron-electron, ion-ion, and
rium, takes place downstream of the shock over a comparaelectron-ion coupling, account for relaxation via interaction
tively long time[1,2]. In the second example, laser energy of normal modes of the hot and cold subsystems.
couples mainly to the electrons. Also, in this case, equilibra- In the present paper, we will show that for weak electron-
tion between electron and ion temperatures takes place ovén coupling, but possibly strong ion-ion coupling, and when
a time much longer than the thermalization within each subthe ion-excitation spectrum lies well below the electron-
system. excitation spectrum, the formula for the rate of energy relax-
The theory of relaxation towards thermodynamic equilib-ation may be obtained using elementary considerations com-
rium in two-temperature plasmas was originally developedined with the fluctuation-dissipation theoref@]. The
by Landau[3] and Spitzer{4]. The result was an explicit summation over all mode frequencies required by the for-
simple formula mula is obtained analytically using tffesum rule[8]. Sur-
prisingly, the rate of temperature relaxation does not depend

d 8 1 on the details of the ionic spectrum of excitatid®yk, w)
(&Te) ~Noz v2me* mM and depends only on the low-frequenay~0) properties of
Landau the electronic spectrum of fluctuatior&k,w). When the
_T K classical limit is taken, the final formula reduces to the Lan-
(Te T|) max 1 I ith . ifi .
T T Edk' (1)  dau form, with minor modifications. _
(_' _e) Kmin This result shows that the Landau thedB;4], and its
M m extensiong 9] for temperature relaxation in weakly coupled

plasmas, can in fact be more general. It applies, with minor
[Te, (T)), m, (M) are the electror(ion) temperature and mMmodifications, also to systems with strong ion-ion coupling.
mass,n, is the density. Limiting the integration over the The condition for the validity of this theory is that electron-
wave-vectork, betweenk i, kmax COMpensates for phenom- ion coupling is weak and the spectrum of fluctuations of the
ena that diminish the effects of electron-ion collisions andons lies far below the resonances in the electrons spectrum.
are not included directly in the theory. Quantum interference
and finite ion-size effects introduce an effective cutoff at
largek. Coulomb screening introduces a smiattutoff. This
formula was obtained by summing the energy loss of elec-
trons, via Coulomb collisions, using the Fokker-Plariok
Landay kinetic equation. This approach applies only to ideal The transfer of energy between the electron and ion sub-
(weakly couplegl plasmas for which thermal energy of the systems is due to field fluctuations in one subsystem acting
particle exceeds by far the potential enefgy. In principle,  on the current fluctuations in the other subsystem. Even for
it does not apply to shocks in metals and liquids and to statesystems with strong ion-ion coupling, the analysis of the

Il. DERIVATION OF THE FORMULA FOR THE RATE
OF ENERGY RELAXATION BY USING
THE FLUCTUATION DISSIPATION THEOREM
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energy-transfer process becomes tractable provided that theéhere (---) denotes the equilibrium-ensemble average and

electron-ion coupling is weak. we have used the fluctuation-dissipation theof&in
Consider a disturbanc@f wave-vectork and frequency 5 o
w), 5n* , in the ion density. This disturbance may be char- Sk, w)=— CO&( T )Im[X”(k ], 7

acterlzed also by the potential viewed by the electrons:

5¢~ —V 5n‘ (2)  Which connects the spectrum of fluctuatior®' (k, w)

=(5n'* 5n'7|;7w> and the density response function

For the simple case where the ions may be treated agl(k ).

points of charge, Eq(2) is just the Coulomb law withV/; Note that in our derivation of Eq5) Im[x*¥k,»)] comes
=e?/k®. We have used the factd!‘ to allow for a more from the electron response whiIe et (K, )] comes from
general treatment in which the |nteract|on between electronghe averaging proceqﬁn* an' & _,) With the aid of the
and ions may be described by a pseudopotefitie] that  fjctuation-dissipation theorem, i.e.. the derivation of .
accounts also for the finite size of the ion core. involves only the averaging over ion fluctuations

. e . .
Since the pseudopotenﬂa{t is weak by construction, we Similarly, a fluctuation in the electron densnyink
may assume that the total system is made up of two Subgjth the corresponding potential
systems with the response of each subsystem given by a
generalized mean-field-type expression of the form 5(,5‘5 =Vésns (8)

" _ " 0 _ A2 _ e
Xk @) =x*Tk, @)’/ (1~ Vi) (1= G will induce a perturbation in the ion density and current

e 0,
XX e(k )X (k,w), |ndl_5¢k “(E,(u), 9)
X'(K,0) = x"(K,0)%(1-(Z&)?V(1- G x" (K, )°. R
O e et e
Here, the noninteractirlg response functi@ng., for elec- (10)
trons is denoted by ®%k,»)°, while G;®is the correspond-
ing local-field correction. The energy transfer between the electrons and ions due to an

Within the framework of linear-response theory, the dis-ensemble of such electron-density fluctuations is
turbance&;bk induces an electron response that may be

o
characterized by the disturbed densﬁyk € Wwhich is re- iKe f d ksdwelm<6j'kndl SE°. )
lated to the ion disturbance by dt (2m) “k-o
d3|2 ﬁ fiw
and a corresponding current X Im[X“(IZ,m)]Im[Xee( R,w)]_ (11)

K vinde_ ind.e ee The total energy transfer between the electrons and ions is

k' 5Jk’w B 5nk'w ( k) 65¢k w( ) ko) ©) the sum of transfer due to the interaction between spontane-

ous fluctuations in ion density and the corresponding induced

The energy transfer between the electrons and the iongerturbation in the electron density, and the transfer due to
due to an ensemble of such ion-density fluctuations is the interaction between the spontaneous fluctuations in elec-
tron density and the corresponding induced perturbation in

d d3k inde =l the ion density, i.e.,
K =Jdeelm(5jk '5E7E,7w>
d K d Ke+ d K!
d3k dt~ dt dt
J(—gdwe ( V )2 Im[ x4k, ) dt dt dt
_J d3k 4 h hw hw
X<5”|2,w5”7|2,w>] R )3w w5 cotl 2T —cot 2T
B d3k g h hw v ><(e\/§)2 |m[X“(E,w)]|m[Xee(lZ,w)]. (12)
(27)3 wECOt 2T| e w( k)
3 R This equation is equivalent to E6) in Ref.[6] where it
XIm[x®4 Kk, »)]Im[ x"(k,w)], (6)  was derived using a variant of the Fermi golden rule.
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Note that the only contributions to energy transfer be- ¢ )
tween the electron and ion subsystems come from interaction ¢ K=oyl Te—Ti]
between fields and the correspondimgduced currents.

These are the only in-phase terms. Other terms are averaged 472 9 R d3Kk
out due to the statistical isotropy of the random fields and X J ——— M % Im| — x®4k, ) —.
k dw _(2m)
currents. ®=0
Note also that the derivation of E@L2) is based on sepa- (15)

ration between fluctuations in one subsystétectrons or

ions) which are the result of all the interactions and correla-

tions within this subsystem and the corresponding induced According to Eq.(15), the rate of energy relaxation be-

fluctuations in the other subsystem. Back effect of the intween electrons and ions is not sensitive to the details of the

duced fluctuations are not considered. This is equivalent t@nic spectrum of fluctuations. The physical explanation of

the lowest significant order in an expansion with thethis feature is very simple. In the relevant rangeepfthe

electron-ion coupling as a small parameter, while ion-ionspectrum of fluctuations of the electron density is indepen-

coupling may be of arbitrary strengtlas long as it is con- dent of w, thus, the overlap of the electron-ion spectra is

sistent with the magnitude of the | coupling parametgr proportional to the total energy in the ionic spectrum of fluc-
tuations, which by thd-sum rule, depends only on the ion
density. This means that, in spite of the independence on ion

lIl. EVALUATION OF THE RELAXATION RATE spectrum, formuld15) already includes relaxation by inter-
BY USING THE f-SUM RULE action between electrons and all ion-collective and single-
_ e particle modes.
The spectrum of fluctuations; Im[x"(k,w)] drops to It should be emphasized that this is a direct consequence

zero very rapidly as the phase velocityk of the excitation of the large separatiofin o,k spacé between the spectra of

exceeds the ions thermal velocityT; /M, or as the fre- the electrons and ions. In systems for which coupled modes

que_z_ncy w _exceeds the ion plasma frequenciy, dominatd 11], the representation used in the present paper of
= y4mnee’/M. In most cases, for the electrons, th|s IS @istinct electron fluctuation spectrum and ion fluctuation
very low-frequency range, i.e., the range that contributes Qe crym, each obeying the fluctuation-dissipation theorem
the o integration in Eg. (12) is characterized byw and thef-sum rule separately, is not valid.
<k\To/m and alsok w/2T; i w/2T<1. ’
Using this feature [12] we may replace
l(.f“f;/ 2)coth@w/2T) by T and Inix*7, by its low-frequency IV. REDUCTION TO THE LANDAU-SPITZER FORM
imi
In order to make contact with the simplified res[Hq.
(1)] of the Landau theory, let us consider a rather general and
widely used mean-field approximation, for the electron-

' 13 response function, with local-field correctiph0],

~ d ~
e . e
ImLxTK,0)) =0 Im) 72 xR |

Oe
ee_ X

1-eV[(1-GPx%’

(where we have used the antisymmetrySf with respect to
). Representing the pseudopotential aV;
=(4me?lk’>)M, Eq.(12) is reduced to

X (16)

where x°®(k, ) is the density response function for nonin-
teracting Fermi gaB8], G;° is the (statig local-field correc-

=0 tion andVEeis the potential acting between electrons. The
derivative at the origin reads

dK—flT T4we2|v|-2| 7R
Gi%= | LT Til 2 IMd*Im == x4k, )

37

xfm | 47762”12 d 'k 14
%wmvx(,w) O 23 (14
K
. . . . J Jdw
By the f-sum rule for the iongjust another manifestation of —xXx* = = S oS ,
conservation of particlef8]), no matter what is the shape of do” |, o (1—9\/E (1-GHRe(x")) Y

the ion response functiofwhich may also include the elec- (17)
tron screening effetthe w integration in the curled brackets
in Eg. (14) depends only on the ion density and equals

- ngi. where we have used, again, the antisymmetry offffvith
Using this result, one gets the following simplified for- respect tow. With this result, the energy relaxation rate of
mula for the energy relaxation rate: Eq. (15) is given by
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d ’ 47e? 2
=TT [ oM

J 0e|2
) Im| ——x"(k,») - ™
(1-eV(1-GEIRe x*(k,0)) (2m)*"

(18

Formula(18) is equivalent to formulgl) and its quantum
generalization presented in RE8]. To demonstrate this, let

us use the response function of nondegenerate electrons, i.e

n
RX*(kO)]=~ .

e

(19

No ™ W 2 2,22
|m[)(0(k,w)]: _ T_ \/: e*(w 12(T/m)k™+A"K™/8mT)
e

2 T

k J—

m

5
sinhf —
T

X—

, 20
— (20
T
and
| [a (K, w) s =
m — J© ==\ —.
do X oo Te V2 k(Tam

Taking eV =4m7e/k? in Eq. (18), we get the following
formula for the temperature relaxation rate:

21d et [Te—Ti]

dT— K—\/2_8
dt ¢ 3ngdt. YT 3" Mm (T./m)P?

K4e~h2K%BmT,
XJ|ME|2 212 812 I
[k*+k5(1-Gp91? k

dk. (22

Note that in Eq.(22), the range of wave-vectols that

PHYSICAL REVIEW E 64 066411

= Al {normal density) ==
g 10-4 = ( r 'ty ~ : e
~ ] T.=0.08¢eV Pty

=4 on -

S =T L
s 1 0 emrT e
£ ]

c

g {1 v

-

® 10"

< All-w (solid line)
S / f-sum (circles)

& ] Cls-A (crosses)

1
20.0 30.0

T, (eV)

0.0 400

FIG. 1. Rate of energy relaxation per igatomic unit3 as a
function of electron temperatur@V) in various approximations:
“All- @” - a direct integration as prescribed in the “mode overlap”
formula [Eq. (12)]; “f-sum” the low-frequency approximation
+ f-sum rule resulfEg. (15)]; “Cls-A" a calculation according to
Eq. (22) using the same pseudopotentials and local-field corrections
as in the “All-o” and “ f-sum” calculations. “L-S” -Landau-Spitzer
formula; “dL-S” -a generalization that treats also electron degen-
eracy as in Ref[9] but with nonzero ion temperature. The cutoff
wave vectorskminkmax N€cessary for formulas “L-S” and “dL-S”
were taken as in Ref13].

at its melting point T;=0.0813 eV). The pseudopotentials
are as in Ref[6]. Here, the ionization changes fraf+ 3 to
Z=5.2 whenT, varies from 2 to 40 eV. Figure 1 compares
the rate of energy relaxation as predicted by the three ap-
proximations of the “mode overlap” formulas, Edq12),
which are labeled as follows: “Alk” refers to a direct in-
tegration as prescribed in the “mode-overlap” form{iEg.
(12)]; “f-sum” is the low-frequency approximatienf-sum
rule resulf{Eq. (15)]; “Cls- A” refers to a calculation accord-
ing to Eqg.(22) using the same pseudopotentials and local-
field corrections as in the “Allw” and “ f-sum” calculations.
These result show that the low-frequerchsum rule ap-
proximation presents a fairly good estimate to the rate of
energy relaxation as predicted by the “mode-overlap” for-
mula(12). Also, the “Cls” line, which follows formula(22)
which is very similar to the Landau-Spitzer formula, is fairly
close to the “All-w” line.

contribute to the integral are limited by the denominator and On top of these lines we have added two lines that corre-

by the exponent to the rangek3(1— G = Kpin<k<Knax

spond to a direct evaluation of the Landau-Spitzer formula

=/8mT,/#2. This equation was derived with the restriction (labeled “L-S”) and a generalization that treats also electron

Te/m=>T;/M, so that Eq(22), with [M|?=1, is essentially
the Landau-Spitzer resUlEq. (1)].

degeneracy9] (labeled “dL-S"). The cutoff wave vectors
Kmin .Kmax Ne€Cessary for these formulas were taken as in Ref.

We have considered singly ionized plasmas. For a plasmiel3]. From these results, we see that even a direct use of the

with ion densityn, and a degree of ionization, the rate of
energy relaxation is larger by a factor &f than the value
predicted by Eqs(l), (12), and(22).

V. NUMERICAL DEMONSTRATION

In order to demonstrate the validity of the various ap-

Landau-Spitzer formuléas derived for weakly coupled plas-
mas, without modificationsgives an estimate of the relax-
ation rate that is within a factor of 2—3 the same as the
prediction of the “mode-overlap” formula.

VI. SUMMARY

proximations applied, we calculate the energy relaxation per We have derived a simple formul&q. (15)] for the rate
ion for aluminum plasma at normal density and with the ionsof energy transfer between electrons and ions in two-
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temperature systems, possibly with strong ion-ion andnly on the ion density. This means that, in spite of the
electron-electron coupling. The condition for the validity of independence on ion spectrum, the formula already includes
this formula is that electron-ion coupling is weak and therelaxation by interaction between electrons and all ion
spectrum of fluctuations of the ions lies far below the reso{collective- and single-particlemodes. The well-known
nances in the electrons spectrum. According to this formulal.andau-Spitzer formuld3,4] [Eq. (1)], is recovered, with

the rate of energy relaxation between electrons and ions isinor modifications, when the electronic-response function
not sensitive to the details of the ionic spectrum of fluctua-near zero frequency is replaced by its random-phase approxi-
tions and depends only on the near-zero frequenrgey Q) mation with a local-field correctiofil0] [see Eq(22)]. This
properties of the electronic spectrum of fluctuations. Theshows that the Landau theory that was originally derived for
physical explanation of this feature is that in the relevantideal plasmas, is in fact more general and applies, with minor
range ofw, the spectrum of fluctuations of electron density ismodifications, also to systems with strong ion-ion coupling.
independent ofv, thus, the overlap integral of the electron- That is, one may use the Landau-Spitzer formula, in experi-
ion spectra is proportional to the total energy in the ionicmental situations where electrons are much hotter than ions,
spectrum of fluctuations, which by tHesum rule, depends and such that the electron-ion coupling is weak.
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